Crystal Chemistry of the Ba-Nb-S System: A Layer Structure of Approximate Composition $\mathrm{Ba}_{2} \mathrm{NbS}_{4}\left(\mathbf{S}_{2}\right)_{0.5}$

J. S. SWINNEA and H. STEINFINK
Department of Chemical Engineering, Materials Science and Engineering Laboratories, The University of Texas, Austin, Texas 78712

and L. E. RENDÓN-DIAZ MIRÓN and L. BANOS-LÓPEZ
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma, Apdo. Postal 70-360, Mexico, D.F., Mexico

Received February 23, 1984; in revised form July 16, 1984

Abstract

Black platy crystals from the product of a reaction mixture of $6 \mathrm{BaS}: 3 \mathrm{Nb}: 7 \mathrm{~S}$ reacted at $1000^{\circ} \mathrm{C}$ were hexagonal with $a=6.909(4) \AA, c=49.25(2) \AA, P 63 / m m c, Z=10$. A pronounced subcell with $a=6.91$ $\AA, c=5.5 \AA$ indicated that this was a layer structure consisting of stacking of close-packed BaS_{3} layers. Three dimensional X-ray diffraction data were collected from a single crystal using monochromatized MoK α radiation. From the 1535 measured reflections, 782 unique structure amplitudes were obtained of which 608 greater than $2 \sigma(F)$ were used to solve the structure. The final $R=0.1065, \omega R=$ 0.0793 ; for 91 reflections with $l=9 n, R=0.0397$ and for the 517 reflections $l \neq 9 n, R=0.138$. The structure is based on the stacking of close-packed BaS_{3} layers with the sequence CBDBABDBC BCDCACDCB, where D designates a disordered layer. The disordered layers contain two crystallographically independent Ba with partial site occupancies and disordered S_{2} and S ions. Nb occupy octahedral interstices and form two different arrangements; a unit consisting of 3 face-sharing octahedra and a unit of 2 face-sharing octahedra. These octahedral units are separated by the disordered layers. The $\mathrm{Nb}-\mathrm{Nb}$ distances in the chain of 3 are $3.29 \AA$ and they are $3.57 \AA$ in the double unit. © 1985 Academic Press, Inc.

Introduction

An ongoing program to investigate the phases formed in the $\mathrm{Ba}-\mathrm{Nb}-\mathrm{S}$ system has led to the recent report on the layer structure of a phase with approximate composition $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ (1). A review of the literature by Swinnea et al. (1) concluded that the stoichiometries and crystal structures of the $\mathrm{Ba}-\mathrm{Ta}$ and $\mathrm{Ba}-\mathrm{Nb}$ chalcogenides are very uncertain. They appear to be layer structures formed by stacking of closepacked layers of $\mathrm{Ba} X_{3}$ with the transition metals occupying octahedral interstices.

The structural investigation reported here is of a phase with approximate composition $\mathrm{Ba}: \mathrm{Nb}: S=2: 1: 5$, very close to the previously reported composition $2: 1: 4.5$.
The reaction conditions were identical to those described previously (I). A mixture in the ratio $6 \mathrm{BaS}: 3 \mathrm{Nb}: 7 \mathrm{~S}$ contained in a graphite crucible was sealed in a Vycor ampule and heated at $1000^{\circ} \mathrm{C}$ for several days. The reaction product showed many wellformed, black platy crystals very similar to those of the $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ phase as well as other irregular black crystal fragments. The powder diffraction diagram of the reaction
product was complex, apparently a composite of several phases, none of which could be matched with the powder pattern of $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$. Several plates were selected and analyzed in an electron-beam microprobe. The results indicated a composition $\mathrm{Ba}: \mathrm{Nb}: \mathrm{S}$ approximately $2: 1: 3$. A single crystal was mounted and Weissenberg and precession diagrams showed a hexagonal unit cell $a=6.9 \AA$ and $c=49 \AA$. The a axis is essentially equal to the subcell a parameter of $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ but c differs. The diffraction diagrams showed that this was also a layer structure and pronounced subcell reflections were observed indicating a c^{\prime} parameter of $5.5 \AA$ or $\frac{1}{9} c$. The subcell parameters are very similar to those reported for a phase $\mathrm{BaNb}_{0.8} \mathrm{~S}_{3}$ for which no structural information is available (2). The similarity of the structural motif to that of $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ was sufficiently compelling to us to determine the layer arrangement in detail. We were also very interested to learn whether the previous observation that only 3 face-sharing NbS_{6} octahedra can exist contiguously in a layer structure will hold in this compound. We therefore proceeded with the crystal structure solution.

Structure Determination

Weissenberg and precession photographs of a single crystal showed the diffraction symmetry of this compound to be $6 / \mathrm{mmm}$ with systematic absence $h h l: l=2 n+1$, consistent with space groups $P 6_{3} / m m c$, $P 6_{3} m c$, and $P \overline{6} 2 c$. The first two space groups frequently occur for close-packed systems (3) and we decided to build a structure in the centrosymmetric group; an effort which was subsequently shown to be justified. A single crystal shaped like a pentagonal trapezoid with a base whose edges varied from 0.0128 to 0.0229 cm , the top face edges varied from 0.0088 to 0.0109 cm , and the height was 0.0074 cm , was mounted on an automated single-crystal diffractome-
ter and data were collected to $\sin \theta / \lambda=0.70$ using MoK α radiation monochromatized with a graphite crystal. The diffractometer was operated in the ω-scan mode with scan rates varying from 1.5 to $5^{\circ} \mathrm{min}^{-1}$. A leastsquares refinement of 15 reflections whose 2θ values were precisely determined in the range $19-27^{\circ}$ yielded the lattice parameters $a=6.909(4) \AA$ and $c=49.25(2) \AA$. The measured intensities were transformed in the usual manner to structure factors and included an absorption correction $\mu_{l}=12.3$ mm^{-1} based on an assumed unit cell content $\mathrm{Ba}_{20} \mathrm{Nb}_{10} \mathrm{~S}_{50}$. The transmission factors ranged from 0.32 to 0.51 . Estimated errors of the intensities were calculated from

$$
\sigma\left(F^{2}\right)=S\left[I_{\mathrm{p}}+1 / R^{2}\left(I_{\mathrm{B}_{1}}+I_{\mathrm{B}_{2}}\right)+(\mathrm{p} I)^{2}\right]^{1 / 2}
$$

where $I_{\mathrm{p}}=$ number of counts accumulated during the scan of the peak, $I_{\mathrm{B}_{1}}=$ background counts on low 2θ side, $I_{\mathrm{B}_{2}}=$ background counts on high 2θ side, $S=$ speed of scan in deg $\min ^{-1}, R=$ ratio of total background counting time/scan time, $p=0.02$. Of the 1535 reflections measured in $\frac{1}{12}$ of the reciprocal space volume 81 hhl had zero intensity due to the space group absence. Equivalent reflections contained in the remaining 1454 reflections were averaged to produce 782 unique reflections with $R=$ 0.039 . The structure was solved using 608 structure amplitudes greater than $2 \sigma(F)$.

A direct methods procedure for $\mathrm{P6}_{3} / \mathrm{mmc}$ showed an E map which was consistent with close-packed BaS_{3} layers with the alternating sequence CBCB . . . and Nb in the interstitial octahedral sites, yielding the stoichiometry $\mathrm{BaNbS}_{3} .^{1}$ As expected, only the subcell reflections $h k l: l=9 n$ entered into this calculation and the true structure necessarily must differ from such an arrangement. There are 14 possible stacking sequences for close-packed BaS_{3} layers in

[^0]TABLE I
Atomic Parameters $\left(\times 10^{4}\right)$ and Temperature Parameters $\left(\times 10^{3}\right)$ for $\mathrm{Ba}_{2} \mathrm{NbS}_{4}\left(\mathrm{~S}_{2}\right)_{0.5}$. (Standard Deviations in Parentheses)

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$U_{\text {eq }}{ }^{b}$ $\left(\AA^{2}\right)$	Occupancy
Ba1	0	0	4	$84(4)$	84^{a}	$45(4)$	42	0	0	$71(2)$	
Ba2	$\frac{1}{3}$	$\frac{2}{3}$	$7001(1)$	$41(2)$	41	$19(2)$	20	0	0	$34(1)$	
Ba3	$\frac{1}{3}$	$\frac{2}{2}$	$5809(1)$	$30(1)$	30	$12(1)$	15	0	0	$24(1)$	
Ba4	$\frac{1}{3}$	$\frac{2}{3}$	$4713(1)$	$24(1)$	24	$45(2)$	12	0	0	$31(1)$	
Ba5	$\frac{1}{3}$	$\frac{2}{3}$	$3615(1)$	$110(5)$	110	$33(3)$	55	0	0	$84(3)$	$3.20(7)$
Ba6	$563(6)$	$2 x$	$3562(1)$	$26(3)$	$49(5)$	$30(3)$	$25(3)$	$-3(2)$	-6	$33(3)$	$3.59(8)^{c}$
Nb1	0	0	2	$32(3)$	32	$12(3)$	16	0	0	$26(2)$	
Nb2	0	0	$668(1)$	$42(2)$	42	$26(3)$	21	0	0	$36(2)$	
Nb3	$\frac{1}{3}$	$\frac{2}{3}$	$2862(1)$	$46(3)$	46	$48(4)$	23	0	0	$47(2)$	
S1	$4952(16)$	$2 x$	$\frac{1}{4}$	$65(8)$	$51(10)$	$32(6)$	25	0	0	$51(6)$	
S2	$8354(11)$	$2 x$	$6924(3)$	$49(5)$	$31(7)$	$153(11)$	$15(3)$	$8(5)$	17	$79(5)$	
S3	$8340(12)$	$2 x$	$5878(2)$	$55(5)$	$48(8)$	$88(7)$	$24(4)$	$16(4)$	32	$64(5)$	
S4	$8359(8)$	$2 x$	$4707(1)$	$27(3)$	$9(4)$	$37(4)$	$4(2)$	$-4(3)$	-8	$26(2)$	
S5	$\frac{1}{3}$	$\frac{2}{3}$	$1916(4)$							$5(8)^{d}$	$2.00(18)$
S6	$4168(38)$	$2 x$	$6406(7)$							$12(17)^{d}$	$2.27(44)$
S7	$2448(24)$	$2 x$	$6404(4)$							$28(11)^{d}$	$4.44(49)$

Note. The temperature factor is $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2\left(U_{12} h k a^{*} b^{*} \mid \quad U_{13} h l a^{*} c^{*}+\right.\right.\right.$ $\left.\left.\left.U_{23} k l b^{*} c^{*}\right)\right)\right]$.
${ }^{a}$ The omission of a standard deviation indicates a symmetry related quantity, i.e., $U_{22}=U_{11}, U_{11}=2 U_{12}, U_{13}$ $=2 U_{23}$.
${ }^{6} \frac{1}{3}$ (Trace of orthogonalized $U_{i j}$ matrix).
${ }^{\text {c }}$ Based on occupancy of a $00 z$ position.
${ }^{d}$ Isotropic refinement.
this space group (4) and we calculated R values for all possibilities. The values ranged from 52 to 72%. A number of electron density maps were calculated for stacking sequences having R values 52$60 \%$. After many false starts a sequence having the Zhdanov symbol 211(1)112 seemed to offer the greatest promise for a successful solution of the structure (3). As expected Nb appeared in octahedral interstices forming a sequence of 3 face-sharing octahedra alternating with, and separated from, two face-sharing octahedra. The layers separating the Nb occupied octahedral sequences showed electron density due to disordered atoms, reminiscent of the observations in the crystal structure of $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ (1). Electron density also appeared in the unoccupied trigonal site of the $\mathrm{Ba}(2) \mathrm{S}_{3}$ lay-
ers (see atom labeling in Table I). The peaks were assigned to Ba or S on the basis of their location in the structure and near neighbor environment. Least-squares refinements converged to the parameters shown in Table I. For 608 structure amplitudes greater than $2 \sigma(F), R=0.1065$ and $\omega R=0.0793, \omega=4.2649 / \sigma^{2}(F)$; for 91 reflections $h k l: l=9 n R=0.0397$ and for 517 reflections $h k l: l \neq 9 n, R=0.138$. The maximum $\Delta / \sigma=0.023$. The scattering factors were for neutral atoms corrected for the real and imaginary parts of dispersion (5). The final difference electron density map showed a maximum peak of about $5 e^{-} \AA^{-3}$ and a hole of about the same extent. Calculations were carried out using the program SHELX-76 and bond distances and angles were calculated using the program

BADTEA (6). Table II contains a list of observed and calculated structure factors. ${ }^{2}$

Discussion

The layers . . . CBDBABDBC . . . (D
$=$ disordered level) in the first half of the unit cell occur at the idealized values of $z=$ ${ }_{36}^{16}, \frac{3}{36}$, . . $\frac{17}{36}$. The observation of electron density in the D levels at A and C sites leads to the inference that the true structure could have the sequence CBABABCBC. Models based on this arrangement would not refine. We also attempted to construct models in space group $\mathrm{Pb}_{3} m c$ for which seven possibilities exist (4), but none could be refined successfully. The structure as finally determined and illustrated in Fig. 1 consists of close-packed BaS_{3} layers, $\mathrm{Ba}(1) \mathrm{S}_{3}, \mathrm{Ba}(2) \mathrm{S}_{3}, \mathrm{Ba}(3) \mathrm{S}_{3}$, and $\mathrm{Ba}(4) \mathrm{S}_{3}$. However, the stacking is not continuous along the c axis. Layers are bridged by Ba 5 and Ba6 in trigonal prismatic coordination and apparently by disulfide and sulfide ions, S6-S7, and S7, respectively.

An examination of bond distances listed in Table III shows that S6-S7 is $2.06 \AA$ and S2-S5 is $2.02 \AA$, typical of the S_{2}^{2-} ion. Electron density and difference electron density maps always showed scattering matter of about 8 electrons at $\frac{1}{3} \frac{2}{3} 0.1915$, labeled S5, in the center of a triad of S2 atoms. The $\mathrm{S}(2)$ atoms have a large U_{33} value which together with the density labeled S 5 may be indicative of a disorder in the $\mathrm{S}(2)$ sites. The Nb 3 ion occupies the octahedron formed by three S 2 and three S 1 . The U_{33} thermal parameter for Nb 3 is 58 $\times 10^{-3}$ which is $2 U_{33}$ for Nb 2 and $3 U_{33}$ for Nbl and may be due to the postulated dis-

[^1]

Fig. 1. View of the structure. The c axis is vertical and Nb 1 is at $00 \frac{1}{2}$. The disordered level shown is at $z=$ 0.3615 . The disk represents S5. S atoms within a BaS_{3} layer have the same designation as the Ba .
order around the Nb 3 site. Refinements in which the occupancy factor of Nb 3 was allowed to vary always yielded full occupancy. It is also possible that the unexplained scattering density is due to an interstitial oxygen atom which could have been introduced occasionally into the structure. The local environment around $\mathrm{Nb}(3)$ could be drastically changed and perhaps become tetrahedral with either an oxygen at the apex or a S_{2} ion formed by $S_{2}-S_{5}(7)$.

In order to test the significance of the scattering densities labeled S5, S6, and S7 a R factor ratio test was calculated for the hypothesis that some or all of these atoms are unnecessary. Eight models were examined at a significance level $\alpha=0.005, n-m$ $=500$ (5) and the results are shown in Table IV. It is evident that S5, S6, and S7 repre-

TABLE III
Bond Distances in \AA Angstroms

6Bal-S1	3.455(14)	6Nbl-S4	2.437(7)
6 -S2	3.454(12)	3Nb2-S3	2.241(12)
3Ba2-S1	3.203(11)	$3-\mathrm{S} 4$	$2.693(8)$
6 -S2	3.475(9)	3Nb3-S1	$2.632(13)$
$3-\mathrm{S} 6$	3.091(32)	$3-\mathrm{S} 2$	2.278(12)
3 -S7	3.126(20)	-S5	1.094(19)
6Ba3-S3	3.472(10)		
3 -S4	3.248(7)		
3 -S6	3.108(32)	2S1--S1	3.356(29)
-S7	3.117(20)	$2-\mathrm{S} 1$	3.554(29)
3Ba4-S3	3.533(11)	$4-$ S2	3.459(14)
6 -S4	3.455(7)	$2-$ S5	3.467(18)
$3-$ S4	3.504(8)	2S2-S2	3.413(19)
3Ba5-S2	3.337(11)	$2-\mathrm{S} 2$	$3.496(19)$
$3-$-S	3.198(11)	$2-\mathrm{S} 6$	3.673(34)
3 -S6	2.994(38)	$2-\mathrm{S} 7$	3.640(23)
6 -S7	$3.580(20)$	$3-\mathrm{S} 5$	2.019(11)
1 -S5	2.618(19)	2S3-S3	3.440(22)
3 -Ba6	3.327(7)	$2-\mathrm{S} 3$	3.469(22)
1Ba6-S2	2.723(13)	$2-\mathrm{S} 4$	$3.493(12)$
$2-\mathrm{S} 2$	3.376(13)	$2-$ S6	3.706 (33)
$2-$ S3	3.651(12)	$2-$ S7	3.660(22)
1 -S3	3.053(12)	2S4-S4	$3.492(12)$
$2-$ S6	$3.170(22)$	$2-\mathrm{S} 4$	3.401(14)
$2-$ S6	3.473(31)	$2-$ S4	3.509(14)
$2-\mathrm{S} 7$	2.661(22)	2S6-S6	$1.726(66)$
1 -S7	3.604(26)	$2-$ S7	1.031(40)
$2-\mathrm{Ba} 6$	1.166(11)	1 -S7	2.059(46)
		1 -S5	3.907(38)
		2S7-S7	1.839(44)
		$\mathrm{Nb} 1-\mathrm{Nb} 2$	3.288(5)
		Nb3-Nb3	3.562(11)

sent significant scattering densities although assignments to an atom species are uncertain.

The peak heights in the electron density maps which were eventually labeled Ba 5 and Ba6 were always lower than those for the other Ba positions. Indeed, they are present on a statistical basis in the trigonal prismatic interstices formed by the $\mathrm{Ba}(2) \mathrm{S}(2)_{3}$ and $\mathrm{Ba}(3) \mathrm{S}(3)_{3}$ levels and serve to tie the close-packed levels together. The disulfide ion $S(6)-S(7)$ or the sulfide ion $S(7)$ cap the 3 rectangular faces of the trigonal prism (Fig. 1). The Ba6 appears disordered around the threefold axis, slightly
displaced from the ($00 z$) position. If it were located on the threefold axis then $\mathrm{Ba} 5-\mathrm{Ba} 6$ becomes about $4 \AA$ while the distance to the displaced Ba 6 atom furthest from Ba 5 is 4.4 Å.

The disorder as reflected in the various occupancy factors is thought to be due to the choice of $\mathrm{Pb}_{3} / \mathrm{mmc}$. The true crystal system is probably not hexagonal and may well be triclinic. The close-packed layers, BaS_{3}, and the Nb ions are located in the structure consistent with $P 6_{3} / m m c$. The other atoms are forced to become "disordered" because their equipoints in the structure are not consistent with the chosen space group symmetry elements. The weighted reciprocal lattice was very carefully examined and no inconsistency with $P 6_{3} / m m c$ was observed. Since the major part of the scattering matter in the unit cell is consistent with $P 6_{3} / \mathrm{mmc}$ this is not surprising.

The S_{2}^{2-} ion formed by $\mathbf{S 6 - S 7}$ in the disordered level has its center of gravity on the threefold axis and only one of the 3 orientations can be occupied in a given unit cell. Only one orientation is shown in Fig. 1. There are four such levels in the unit cell. The occupancy factors for S6 and S7 produce a total of about 7 atoms in the unit cell. If it is assumed that one S_{2} exists at

TABLE IV

R-Ratio Test for 8 Models Containing
Combinations of Atoms S5, S6, and S7 at $\alpha=$ 0.005 AND $n-m=500$

Atoms	R	ωR	b^{a}	R (calc.)	R (theor.)
All	0.1065	0.0793	0	1.0	
S5,S6	0.1254	0.0986	3	1.243	1.013
S6,S7	0.1326	0.1047	3	1.320	1.013
S5,S7	0.1159	0.0875	3	1.103	1.013
S5	0.1388	0.1112	6	1.402	1.019
S6	0.1435	0.1173	6	1.479	1.019
S7	0.1382	0.1088	6	1.372	1.019
None	0.1547	0.1267	9	1.598	1.024

[^2]each level the occupancy factors should have been equal and provided for 8 atoms in the unit cell. The $2: 1$ ratio of $S 7: S 6$ could imply that at the temperature of the reaction only sulfide exists but during the slow-cooling process S_{2} ions can be introduced. The difficulties of interpreting the meaning of the statistically occupied sites prevent the assignment of a definite stoichiometry to this compound.

The octahedra around Nb share faces. Nb 1 and Nb 2 form a trinuclear cluster. Nb 1 is at the center of the octahedron with equal $\mathrm{Nb}-\mathrm{S}$ distances of $2.43 \AA$. The Nb 2 and $\mathrm{Nb} 2^{\prime}$ are displaced $0.6 \AA$ from the center so that $\mathrm{Nb} 1-\mathrm{Nb} 2$ becomes $3.29 \AA$. This was also observed in the structure of $\mathrm{Ba}_{4} \mathrm{Nb}_{2} \mathrm{~S}_{9}$ and it may be a general principle that this displacement must occur because of the electrostatic repulsion between two in line Nb^{5+} and limits such a cluster to at most 3 octahedral units. Nb 3 and its mirror related atom $\mathrm{Nb3}^{\prime}$ are located in face-sharing octahedra but displaced from the center by 0.44 \AA so that $\mathrm{Nb}^{3}-\mathrm{Nb}^{\prime}$ is $3.57 \AA$.

If electrostatic repulsion prevents Nb^{5+} or Ta^{5+} from being closer than about $3.3 \AA$ then the reported structure for BaTaS_{3} (8) may only be realizable for tetravalent cations. Its space group is $P 6_{3} / \mathrm{mmc}$ with $a=$ $6.846 \AA$ and $c=5.744 \AA$ and the structure consists of stacking of BCBC . . . layers of BaS_{3} with Ta in octahedral interstices of face-sharing octahedra forming an infinite chain. The $\mathrm{Ta}-\mathrm{Ta}$ distances are $2.872 \AA$. The authors remark on the fact that unlike
BaVS_{3} which has the same structure and is metallic, BaTaS_{3} is a semiconductor.

Donohue and Weiher (2) observe that "Single phase material was obtained only when starting cation ratios were $\mathrm{Ba} / 0.8 \mathrm{Ta}$ or $\mathrm{Ba} / 0.8 \mathrm{Nb}$,' i.e., pentavalent transition metal cations. The mixtures in which the ratio of barium to transition metal was $1: 1$ always yielded a two-phase product. Unfortunately no single-crystal X-ray study was carried out on this phase and it would be of great interest to determine this structure.

Acknowledgments

H.S. and J.S.S. gratefully acknowledge support from NSF Grant DMR 8217288 and from the Robert A. Welch Foundation, Houston, Texas.

References

1. J. S. Swinnea, H. Steinfink, L. E. RendónDiaz Mirón, and M. Gómez Daza, J. Solid State Chem. 46, 367 (1983).
2. P. C. Donohue and J. F. Weiher, J. Solid State Chem. 10, 142 (1974).
3. "International Tables for X-Ray Crystallography," Vol. II, Chap. 7, Kynoch Press, Birmingham (1959).
4. T. J. McLarnan, Z. Kristallogr. 155, 269 (1981).
5. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
6. L. W. Finger and E. Prince, NBS Technical Note 854, U.S. Govt. Printing Office, Washington, D.C. (1975).
7. L. E. Rendón-Diaz Mirón, C. F. Campana, and H. Steinfink, J. Solid State Chem. 47, 322 (1983).
8. R. A. Gardner, M. Vlasse, and A. Wold, Inorg. Chem. 8, 2784 (1969).

[^0]: ${ }^{1}$ The layer notation follows that in Ref. (3); an A layer has Ba in the 00 z position, a B layer has Ba at ${ }_{\frac{2}{3}}^{\frac{1}{3}}$ z, and a C layer has Ba at $\frac{1}{3} z$.

[^1]: ${ }^{2}$ See NAPS Document No: 04250 for 4 pages of supplementary materials frơm ASIS/NAPS, Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, New York 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$ up to 20 pages plus $\$.30$ for each additional page. All orders must be prepaid.

[^2]: ${ }^{a}$ Definition: $b=N_{\mathrm{p}_{1}}-N_{\mathrm{p} 2}, N_{\mathrm{p} 1}=66$.

